

University of Pretoria Yearbook 2016

Waves, thermodynamics and modern physics 255 (PHY 255)

Qualification	Undergraduate
Faculty	Faculty of Natural and Agricultural Sciences
Module credits	24.00
Programmes	BEd Senior Phase and Further Education and Training Teaching
	BSc(Computer Science) Computer Science
	BSc Applied Mathematics
	BSc Environmental and Engineering Geology
	BSc Environmental Sciences
	BSc Geography
	BSc Geoinformatics
	BSc Geology
	BSc Meteorology
	BSc Physics
Service modules	Faculty of Education
Prerequisites	[PHY114 and PHY124] or [PHY171] or [PHY143 and PHY153 and PHY163] and [WTW211#] and [WTW218#]
Contact time	4 lectures per week, 1 practical per week, 2 discussion classes per week
Language of tuition	English
Academic organisation	Physics
Period of presentation	Semester 1

Module content

Vibrating systems and waves (14 lectures)

Simple harmonic motion (SHM). Superposition (different frequencies, equal frequencies). Perpendicular vibrations (Lissajous figures). Damped SHM. Forced oscillations. Resonance. Q-value. Transverse wave motion. Plane wave solution using method of separation of variables. Reflection and transmission at a boundary. Normal and eigenmodes. Wave packets. Group velocity.

Modern physics (30 lectures)

Special relativity: Galilean and Lorentz transformations. Postulates. Momentum and energy. 4 vectors and tensors. General relativity. Quantum physics. Failure of classical physics. Bohr model. Particle-wave duality. Schrödinger equation. Piece-wise constant potentials. Tunneling. X-rays. Laser. Nuclear physics: Fission. Fusion. Radioactivity.

Heat and thermodynamics (12 lectures)

Heat. First Law. Kinetic theory of gases. Mean free path. Ideal, Clausius, Van der Waals and virial gases. Entropy. Second Law. Engines and refrigerators. Third Law. Thermodynamic potentials: Enthalpy Helmholtz and Gibbs free energies, Chemical potential. Legendre transformations (Maxwell relations). Phase equilibrium. Gibbs phase rule.

Modelling and simulation (7 practical sessions)

Introduction to programming in a high level system: Concept of an algorithm and the basic logic of a computer programme. Symbolic manipulations, graphics, numerical computations. Applications: Selected illustrative examples.

Error Analysis (7 practical sessions)

Experimental uncertainties. Propagation of uncertainties. Statistical analysis of random uncertainties. Normal distribution. Rejection of data. Least-squares fitting. Covariance and correlation.

The information published here is subject to change and may be amended after the publication of this information. The **General Regulations** (**G Regulations**) apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the **General Rules** section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.